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Abstract—The evaluation of the frequency response of waveg-
uiding structures by means of the full-wave finite-element method
requires solving a large generalized eigenvalue problem for each
frequency. This paper describes a novel approach, based on the
singular-value decomposition, which drastically reduces the order
of the eigenvalue problem. By inspection of the singular values, the
accuracy level of the procedure may be controlled. The technique
is applied to the analysis of open and closed waveguides with ar-
bitrary cross section, lossy conductors, and anisotropic dielectric
layers, by means of vector elements of generic order; higher order
elements are shown to allow the accurate evaluation of fields inside
lossy conductors with fewer unknowns, besides exactly modeling
normal field discontinuities at material interfaces. Examples of
application of the reduced-order technique are shown concerning
both non-TEM and quasi-TEM structures.

Index Terms—Finite-element method, higher order vector
elements, reduced-order models, singular-value decomposition.

I. INTRODUCTION

T HE design of microwave, millimeter-wave, and opto-elec-
tronic circuits requires the accurate characterization of

complex, sometimes unconventional, waveguiding structures.
The analysis technique must be able to deal with arbitrary
cross sections, anisotropic substrates with dielectric losses, and
metallic regions of finite conductivity whose thickness may
be smaller or larger than the skin penetration depth within the
frequency band of interest. Moreover, both the fundamental
and higher order modes have to be characterized. Finally, some
opto-electronic applications require the optical and microwave
field distributions to be evaluated in order to compute their
superposition integral.

Among suitable analysis techniques, the finite-element
method (FEM) probably is the most general. Besides allowing
for arbitrary nonplanar geometries and dielectric and magnetic
anisotropic materials, the method enables to accurately esti-
mate conductor losses beyond the skin-effect approximation by
direct discretization of field-penetrated conductor layers. After
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choosing a suitable basis function set, application of Galerkin’s
procedure to the vector wave equation yields a large (but
sparse) generalized eigenvalue problem for each frequency to
be solved for the propagation constant. The use of higher order
elements usually helps reducing the number of unknowns at the
expense of the problem sparsity; besides, higher order elements
are able to correctly describe the discontinuity of the normal
field components at the interfaces between different materials.

If the solution over a given band is sought, then the anal-
ysis must be repeated for many frequency sampling points in
the range of interest, with a very high computational burden.
Fast frequency-sweep methods based on model reduction, first
developed for the analysis of large linear(-ized) circuits [1],
[2], have been applied with success to the analysis of electro-
magnetic (EM) devices. For example, in [3], Padé-via-Lanczos,
Krylov, and rational Krylov methods are used to obtain the scat-
tering parameters of EM devices, in [4] and [5], the asymptotic
waveform evaluation (AWE) method is implemented in con-
junction with the FEM and with the method of moments (MoM),
respectively and in [6], the complex frequency-hopping tech-
nique is adopted to obtain time- and frequency-domain solutions
of EM problems. Concerning the modal analysis of dielectric
waveguides, a fast frequency-sweep technique, based on a tan-
gential-vector FEM combined with the AWE, is reported in [7].

Recently, a novel technique to generate a reduced set of
problem-matched basis functions has been introduced with
application to MoM analysis of frequency-selective surfaces
[8]. The numerical generation of such basis functions is based
on the MoM solution of the scattering problem for a selected
set of values of a variable parameter. In this paper, a fast
numerical technique for spectral-response computations of an
arbitrary two-dimensional waveguide, based on the full-wave
finite-element method (FW-FEM) in conjunction with this
novel approach, is presented. To the authors’ knowledge,
the concept of problem-matched basis functions has never
been applied to guided-wave problems. Moreover, the method
introduced in [8] is extended to extract additional information
from the frequency derivatives of the solution.

The paper is structured as follows. In Section II, the waveg-
uiding problem is formulated using three field components of
the electric field. Section III presents the reduced-order model.
The key point is the numerical generation of a reduced set of
entire-domain problem-matched basis functions, derived as
linear combinations of the original local basis functions. This
problem-matched basis functions set is extremely efficient in
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representing the solution at least on the frequency range of
interest, thus drastically reducing the CPU time required to
evaluate the frequency response. In Section IV, the accuracy
and computational advantages (CPU time reduction of about
one order of magnitude) of the reduced-order model are shown
through a series of examples. Some concluding remarks are
finally presented in Section V.

II. FULL-WAVE FEM ANALYSIS

We consider a lossy anisotropic waveguide with an arbitrary
cross section . From Maxwell’s equations, the following vec-
torial wave equation is derived:

(1)

where is the free-space wavenumber, ,
and . The relative permittivity and per-
meability tensors , are assumed to be diagonal. Dielec-
tric and conductor losses are included in the imaginary part of
the permittivity tensor. Assuming for all of the field components
a -dependence of the form , with as the
complex propagation constant and dividing the waveguide cross
section into a number of hybrid interpolation-type triangular
functions, we expand the electric field within each element as

(2)

where and are, respectively, the transverse- and lon-
gitudinal-variable vectors for each element, and are
the basis functions’ vectors for the triangular curl-conforming
element, and is the basis functions’ vector for the trian-
gular nodal element.

Curl-conforming bases that ensure the continuity of tangen-
tial-field components at element interfaces and eliminate spu-
rious modes in finite-element formulations were first introduced
by Nedelec [9]. Recently, higher order interpolatory forms of
both curl- and divergence-conforming vector bases have been
presented [10]. Curl-conforming bases complete to orderare
obtained by forming the product of the zeroth-order curl-con-
forming bases with polynomial factors complete toth order.
We use multiplying polynomials of shifted interpolatory form.
It must be noticed that, since and should be
complete to the same order, the transverse vector component
of the electric field must be represented by curl-conforming
functions of order and the longitudinal expansion functions
have to be of order [11]. Higher order elements can cor-
rectly model the discontinuity of the normal field components
at interfaces between different materials. The correct behavior
of the field component normal to the triangle edges cannot be
described by zeroth-order bases because such functions do not
have interior degrees of freedom. For , each triangular
element contributes with only two interior degrees of freedom,
whereas the element has three edges. For , there are six
interior degrees of freedom per triangle and, hence, the normal

field discontinuity (or continuity) at each element edge can be
modeled [12], [13].

Application of Galerkin’s procedure to the vectorial wave (1)
yields the following linear sparse eigenvalue problem
[14], [15]:

(3)

which is written for convenience as

(4)

with

(5)

(6)

The Dirichlet boundary conditions are applied by eliminating
all the rows and columns corresponding to the variables associ-
ated to interpolating points lying on electric walls. The Neu-
mann boundary conditions at magnetic walls need not to be
explicitly enforced since they are natural boundary conditions
for the formulation adopted. The final generalized eigenvalue
problem is solved with the function of the MATLAB
partial differential equations (PDEs) toolbox, based on the im-
plicitly restarted Arnoldi method as implemented in ARPACK
[16]. (The most recent and efficient techniques for the solu-
tion of sparse eigenvalue problems are discussed in [17], where
URL’s to available implementations are also presented.)

III. REDUCED-ORDER MODEL

The FEM formulation of the modal problem for waveguiding
structures corresponds to the solution of the generalized eigen-
value problem (4). If one deals with a large-size problem and
is looking for the solution over a wide frequency band, then the
analysis can become very time consuming. In order to speed up
computations, the AWE technique can be adopted. The matrices

and , eigenvalues , and eigenvectors are all func-
tions of the wavenumber. Substituting their Taylor expansions
around into (4) and matching the coefficients of the
corresponding powers of ( ), a recursive system of equa-
tions to be solved for theth-order frequency derivatives (mo-
ments) is obtained [7]. Since all linear
systems have the same coefficient matrix, the computation of
the eigenvector derivatives can be performed efficiently once a
factorization of this matrix is available. After the frequency mo-
ments have been obtained,and may be expressed over a fre-
quency range around a specified expansion pointwith their
Taylor expansions. It is well known, however, that power series
always have a finite radius of convergence in the presence of
poles. Padé approximations, instead, employ rational functions
to approximate a function also beyond the convergence region
of its Taylor expansion. To obtain a wide-band response, several
reduced-order models are usually combined together in a piece-
wise fashion to form a single reduced-order model across the
band of interest. Unfortunately, higher order moments are usu-
ally scarcely linearly independent so that their explicit use, as in
AWE, can result in ill-conditioned numerical computations [1].
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In order to overcome the numerical instability due to the explicit
use of the frequency moments and to extract information from
multiple points, we propose a novel approach.

Let with and be
modal eigenvectors of (4) computed atfrequency points. The
set of vectors define a reduced-order subspaceof
the original Hilbert space

span (7)

The basis vectors in (7) define a subspacecontaining ,
but one has to decide how many of them are necessary. If too
few basis vectors are chosen, there is an unacceptable loss of
accuracy in the representation of . If too many are selected,
one has a redundant description and some basis vectors may be
linearly dependent. In order to define an orthonormal basis of
and its dimension, vectors are arranged columnwise
in a matrix of dimension [where and
is the number of unknowns in (4)], which is subjected to the
economy-size (thin) singular-value decomposition (SVD) [18]

(8)

where is an matrix, is an diagonal matrix with
positive elements (singular values),is an unitary matrix,
and stands for complex conjugate and transpose. The columns
of are the left singular vectors. The significance of the various
singular vectors in the description of the modal fields is mea-
sured by the amplitude of the corresponding singular values.
Since those typically range over several orders of magnitude,
not all of the singular vectors are needed for accuracy. More-
over, by inspection of the dynamic range of the singular values,
the accuracy level of the procedure can be controlled. A small
dynamic range means that the corresponding singular vectors
do not have sufficient span to adequately represent .

Let be the number of singular vectors assumed to be
adequate to span the subspace. These singular vectors define
a set of orthogonalized problem-matched basis functions of the
reduced-order subspace. The projection of the global matrices
onto the subspace yields the reduced-order model

(9)

with

(10)

(11)

where consists of the first columns of matrix . The new
eigenvalue equation to be solved for each frequency value has
size , where may be much smaller than. Notice that,
owing to (5) and (6), the system matrices in (9) can be assem-
bled directly in the reduced-order representation. Equation (9)
can be inexpensively solved by a direct method and the approxi-
mate eigenvectors of (4) may be computed via the matrix–vector
product

(12)

In order to extract more information from the solution in the
expansion points , the th-order frequency derivatives of the
eigenvectors may be computed up to the order.
For simplicity, we discuss the extension of the reduced-order
model for a single mode of the structure. The set of vectors

define a reduced-order subspaceof the original
Hilbert space

span (13)

Once again, the SVD yields an orthonormalized set of basis
functions. As the order of the derivatives is increased, the nu-
merical evaluation of the frequency moments becomes less ac-
curate [19], but unlike the explicit moment-matching AWE pro-
cedure, the current approach provides a numerically stable re-
duction model. In contrast with the subspace defined in (7), the
vectors are now not homogeneous and the selec-
tion of the singular vectors cannot be based on the dynamics of
the corresponding singular values. In the following examples,
whenever frequency derivatives have been computed, all the sin-
gular vectors have been retained in the reduced-order model.

IV. RESULTS

The convergence properties of higher order elements and the
accuracy of the reduced-order model are discussed through a
series of examples including isotropic and anisotropic, lossless
and lossy inhomogeneous waveguides. All computations were
performed with MATLAB on a PC equipped with 1 GB of
RAM.

A. Dielectric-Loaded Waveguide

As a first numerical example, we consider a rectangular wave-
guide with metallic walls loaded with a dielectric slab, as shown
in the inset of Fig. 1(a). Analytical solutions are known for this
type of structure [20] and they can be used to investigate the con-
vergence properties of higher order elements. The relative error
affecting the propagation constant of the fundamental
mode has been computed as a function of the number of un-
knowns, for different orders of the interpolatory elements. As
expected, higher order bases achieve faster convergence rates
[see Fig. 1(b)]. However, it must be remarked that improved
convergence properties are obtained at the expense of producing
less sparse system matrices. For this reason, elements of order
higher than three are rarely used in practice.

The proposed fast frequency-sweep technique has been ap-
plied to the dominant mode of the waveguide. In order to in-
vestigate the numerical accuracy of this technique, the residual
error is defined as

(14)

where and are the approximate eigenpairs obtained
from (9) and (12). In Fig. 2, we compare the error introduced
by two different reduced-order models. In the first model (solid
line), the reduced representation has been obtained computing
the solution at frequency points. In the second model
(dashed line), the frequency derivatives of the solution have
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(a)

(b)

Fig. 1. (a) Dispersion characteristics of the lowest five modes in the
dielectric-slab-loaded rectangular waveguide shown in the inset. (b) Relative
error affecting the propagation constant of the fundamentalLSE mode (at
the normalized frequencyk b = 3) for different orders (p = 0; 1; 2) of the
curl-conforming elements as a function of the number of unknowns.

Fig. 2. Relative error introduced by two different reduced-order models versus
frequency for the dominant mode of the structure.

been computed up to the order at a single expansion
point . In both cases, all the singular vectors have
been retained. The computation of the exact solution in 50 fre-
quency points through the direct application of the FEM pro-
cedure takes 80 s, while reduced-order models lower the CPU
times to 12 and 6.4 s, respectively. The computational domain

Fig. 3. Normalized dispersion diagram for a box microstrip line on an isotropic
substrate (� = 8:875). The dimensions of the waveguide areA = 12:7 mm,
d = 1:27 mm,d = 11:43 mm,W = 1:27mm, andt = 0:127mm.

has been divided into 62 triangles and basis elements of order
have been employed.

B. Microstrip Line

In the following example, we consider a shielded microstrip
transmission line on an isotropic lossless substrate, as sketched
in the inset of Fig. 3. The strip is assumed to be a perfect
conductor. The goal of this example is to demonstrate that the
FEM–SVD technique is able to predict multimode characteris-
tics. Fig. 3 shows the propagation constants (normalized with
respect to the wavenumber) of the first seven even modes
of the structure versus frequency. The eigenvectors have been
evaluated at frequency points, evenly spaced in the
band of interest from 10 to 25 GHz. The application of the
SVD decomposition yields 50 singular vectors. The range of
the singular values is approximately ten orders of magnitude,
which confirms that the frequency sampling rate is sufficient to
represent the modal solutions of the guiding structure. In order
to eliminate the redundancy from the basis functions set, the 23
singular vectors corresponding to singular values five order of
magnitude below the dominant one have been neglected. As
it can be observed from Fig. 3, the selected problem-matched
basis functions alone are sufficient to reproduce the dispersion
diagram of the structure with excellent accuracy (see [21,
Fig. 3] and [15, Fig. 3.8]). Even if the waveguide is lossless,
the propagation constants of the modes may be complex, as
discussed in [15]. The sixth and seventh modes degenerate into
two complex-conjugate modes and then split again into two
ordinary modes. This phenomenon is correctly described by
the reduced-order model, proving that the present method has
a broad range of applicability.

For a given accuracy, the equivalent dimensionof the sub-
space depends on the complexity of the spectral response over
the frequency range of interest. However, the number of ele-
ments in the computational domainand their order does not
affect .

C. Coplanar Waveguide (CPW)

In Fig. 4, we sketch the cross section of a symmetric CPW.
This structure is a typical RF line for electrooptical (EO) mod-
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Fig. 4. Microwave effective indexn and attenuation� (dB/cm) of a
symmetric CPW on an X-cut LiNbOsubstrate with a thin SiObuffer layer,
computed with FW-FEM (solid lines), CM-FEM (triangles), and HFSS (dashed
lines: 15 000 tetrahedra; dotted lines: 50 000 tetrahedra).

ulators on LiNbO substrates [22]. In such applications, syn-
chronous coupling with the optical signal is usually achieved
by inserting a low-dielectric-constant buffer layer underneath
the electrodes and by increasing the electrode thickness. More-
over, the line-to-ground spacing must be kept small to maximize
the coupling between the microwave and optical fields. Due to
the small gap width, these lines exhibit high losses, which can be
minimized through electrode shape design. Owing to their com-
plex cross section and their need for optimization, coplanar lines
for EO modulators are typical candidates for analysis and design
with FEM-based EM computer-aided design (CAD) tools.

Fig. 4 shows the computed propagation and attenuation con-
stants of a symmetric CPW on an X-cut-propagating LiNbO
substrate (the relative permittivities are 43 and 28 perpendic-
ular and parallel to the substrate surface, respectively) coated
with a 1- m-thick SiO buffer layer ( ). The gold
( S/m) electrode thicknessis 20 m. The cen-
tral electrode width is 10 m and the ground-plane gap
is 20 m. The loss tangents of the LiNbOsubstrate and SiO
buffer layer are and , re-
spectively [23]. The results of this approach are compared with
version 7.0.11 of HFSS, a commercial three-dimensional (3-D)
FEM simulator,1 and with a numerical conformal mapping anal-
ysis coupled with quasi-TEM FEM (CM-FEM) [24], [25].

In contrast with pertubative methods based on the skin-effect
approximation, the computational domain of FW-FEM includes
the electrodes, which are characterized by their complex dielec-
tric constants. Our FW-FEM computations have been carried
out on a coarse mesh with 984 triangles, taking advantage of
the symmetry of the structure. Elements of order have
been used, resulting in an eigenvalue problem with 14 130 un-
knowns. The reduced-order model has been obtained computing
the frequency moments of the solution up to the order
at expansion points, GHz, and GHz.
The agreement between our FW-FEM and CM-FEM is excel-
lent over the entire frequency range. Two sets of HFSS results
are also shown, computed with 15 000 and 50 000 tetrahedra,
respectively (the latter case is close to the limit that may be han-

1HFSS is a registered trademark of the Ansoft Corporation, Pittsburgh, PA.

TABLE I
CONTRIBUTIONS TO THETOTAL CPU TIME

dled on a computer with 1 GB of RAM). The HFSS propagation
constant is close to our FW-FEM results in both cases and the
differences become negligible when the denser mesh is used.
On the other hand, HFSS underestimates losses with respect to
CM-FEM and our FW-FEM and only a slight increase is seen
with the denser mesh. Since the same discrepancy can be ob-
served within vacuoCPWs (where numerical conformal map-
ping (CM) results are virtually exact), we deem that it may be
related to an insufficient refinement of the HFSS mesh close to
the metallic edges.

Table I reports all the different contributions to the total CPU
time for the direct and reduced-order FEM, with the only excep-
tion of the mesh generation time, measured on a PC equipped
with an 800-MHz Intel Pentium III processor. An overall com-
parison is also provided for a frequency sweep over 20 samples
on a 20-GHz interval.2

Due to their layered structure, CPWs cannot carry pure TEM
modes. Therefore, the concept of characteristic impedance does
not apply to CPWs in a rigorous sense. However, this quantity
is very useful for design purposes. Among all the possible for-
mulations, we refer to the widely used power–current definition
[14]

(15)

2In our opinion, it would be unfair to compare the timings of our reduced-
order FW-FEM with HFSS, which is a 3-D simulator. As a matter of fact, the
computation of a 20-point frequency sweep with HFSS required approximately
3 h with the 15 000-tetrahedron grid and approximately one day with the 50 000-
tetrahedron grid on the same computer used for FW-FEM simulations.
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(a)

(b)

Fig. 5. (a) Characteristic impedanceZ (
) of the CPW of Fig. 4 versus
frequency computed with the FEM at each frequency point and via the
reduced-order method withQ = 3; 4; 5 problem-matched basis functions.
(b) Normalized singular values forn = 1; . . . ; 10.

where is the modal power and is the total -directed cur-
rent carried by the central electrode.and are related to the
eigenvectors of (9) by

(16)

(17)

with

(18)

where is the lower part of , relative to the longitudinal
variables, and are the projections onto the subspace

of matrices and , respectively, is the electrode
conductivity, is the scalar shape functions vector defined
in (2), and the summation extends over the elements on the
central electrode.

Fig. 5(a) shows the real part of characteristic impedance eval-
uated using problem-matched basis functions. The eigenvec-
tors of (4) have been computed at frequency points
evenly spaced in the band of interest from 0.1 to 10 GHz. The

range of the singular values is approximately six orders of mag-
nitude [see Fig. 5(b)], which confirms that the frequency sam-
pling rate is sufficient to represent the solution. As can be ob-
served, five problem-matched basis functions are able to cap-
ture the EM field behavior of the structure with excellent accu-
racy. This is possible, despite the fact that, owing to skin-effect
losses, the internal field distribution in the conductors drasti-
cally changes within the selected frequency range. The depen-
dence of the subspaceon the particular problem under consid-
eration does not enable the definition of general criteria relating

and the error ; however, as a rule-of-thumb, basis functions
corresponding to singular values at least three orders of magni-
tude below the dominant one can be safely neglected.

V. CONCLUSION

A novel fast frequency-sweep technique has been described,
which enables to efficiently evaluate, through a vector FEM-
based approach, the propagation characteristics of inhomogeous
anisotropic lossy quasi-TEM/non-TEM waveguides. Speed im-
provements of about one order of magnitude with respect to tra-
ditional approaches in the wide-band analysis of typical struc-
tures have been demonstrated. Besides being computationally
efficient, the fast sweep technique is robust and allows a self-
consistent automatic monitoring of the accuracy. The examples
discussed demonstrate the applicability of the proposed method
to a variety of structures; in particular, for quasi-TEM lines, it
has been shown that the method also allows for the efficient
computation of the characteristic impedance.
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