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Abstract—The evaluation of the frequency response of waveg- choosing a suitable basis function set, application of Galerkin’s
uiding structures by means of the full-wave finite-element method procedure to the vector wave equation yields a large (but
requires solving a large generalized eigenvalue problem for each sparse) generalized eigenvalue problem for each frequency to

frequency. This paper describes a novel approach, based on the . .
singular-value decomposition, which drastically reduces the order be solved for the propagation constant. The use of higher order

of the eigenvalue problem. By inspection of the singular values, the €lements usually helps reducing the number of unknowns at the
accuracy level of the procedure may be controlled. The technique expense of the problem sparsity; besides, higher order elements
is applied to the analysis of open and closed waveguides with ar- gre able to correctly describe the discontinuity of the normal

bitrary cross section, lossy conductors, and anisotropic dielectric fia|q components at the interfaces between different materials.
layers, by means of vector elements of generic order; higher order If th luti . band i ht then th |
elements are shown to allow the accurate evaluation of fields inside € solution over a given band IS sougnt, then the anal-

lossy conductors with fewer unknowns, besides exactly modeling YSiS must be repeated for many frequency sampling points in
normal field discontinuities at material interfaces. Examples of the range of interest, with a very high computational burden.

application of the reduced-order technique are shown concering Fast frequency-sweep methods based on model reduction, first
both non-TEM and quasi-TEM structures. developed for the analysis of large linear(-ized) circuits [1],
Index Terms—Finite-element method, higher order vector [2], have been applied with success to the analysis of electro-
elements, reduced-order models, singular-value decomposition.  magnetic (EM) devices. For example, in [3], Padé-via-Lanczos,
Krylov, and rational Krylov methods are used to obtain the scat-
tering parameters of EM devices, in [4] and [5], the asymptotic
_ ) - waveform evaluation (AWE) method is implemented in con-
T HE design of microwave, millimeter-wave, and opto-eleqGynction with the FEM and with the method of moments (MoM),
tronic circuits requires the accurate characterization Péspectively and in [6], the complex frequency-hopping tech-
complex, sometimes unconventional, waveguiding structurggqye is adopted to obtain time- and frequency-domain solutions
The analysis technique must be able to deal with arbitragy Epm problems. Concerning the modal analysis of dielectric
cross sections, anisotropic substrates with dielectric losses, .mg,eguide& a fast frequency-sweep technique, based on a tan-
metallic regions of finite conductivity whose thickness MaYyential-vector FEM combined with the AWE, is reported in [7].
be smaller or larger than the skin penetration depth within theRecen“y’ a novel technique to generate a reduced set of
frequency band of interest. Moreover, both the fundamenigloplem-matched basis functions has been introduced with
and higher order modes have to be characterized. Finally, SOfpplication to MoM analysis of frequency-selective surfaces
opto-electronic applications require the optical and microwayg| The numerical generation of such basis functions is based
field distributions to be evaluated in order to compute thegn the MoM solution of the scattering problem for a selected
superposition integral. set of values of a variable parameter. In this paper, a fast
Among suitable analysis techniques, the finite-elemeRlmerical technique for spectral-response computations of an
method (FEM) probably is the most general. Besides allowingpitrary two-dimensional waveguide, based on the full-wave
for arbitrary nonplanar geometries and dielectric and magnefigite-element method (FW-FEM) in conjunction with this
anisotropic materials, the method enables to accurately egfiye| approach, is presented. To the authors’ knowledge,
mate conductor losses beyond the skin-effect approximation jpy concept of problem-matched basis functions has never
direct discretization of field-penetrated conductor layers. Aftgfaap, applied to guided-wave problems. Moreover, the method
introduced in [8] is extended to extract additional information
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representing the solution at least on the frequency rangefietd discontinuity (or continuity) at each element edge can be
interest, thus drastically reducing the CPU time required toodeled [12], [13].

evaluate the frequency response. In Section 1V, the accuracyApplication of Galerkin’s procedure to the vectorial wave (1)

and computational advantages (CPU time reduction of abgtglds the followingN x N linear sparse eigenvalue problem

one order of magnitude) of the reduced-order model are shojt4], [15]:

through a series of examples. Some concluding remarks are

finally presented in Section V. K. 0) (E, =~2 My M.\ (E, (3)
Il. FULL-WAVE FEM ANALYSIS which is written for convenience as
We conglder a lossy an|sotfop|c wa_vegwde with an arbitrary (K B ,YQM) E—0 (4)
cross sectiof2. From Maxwell’s equations, the following vec-
torial wave equation is derived: with
V x ([V]v x E) kK E=0 @) K(k) =Ko + kK, + K> )
M(k) =My + kM, + k>M,. (6)

wherek = w?eguy is the free-space wavenumbled, = [11,] 1, . . . o

and[e.] = [e.] — jo]/(weo). The relative permittivity and per- The Dirichlet boundary conditions are applied by eliminating

meab7ility teasor$c ], [11+] are assumed to be diagonal Dielecia” the rows and columns corresponding to the variables associ-
ol ' fed to interpolating points lying on electric walls. The Neu-

tric and conductor losses are included in the imaginary part bound diti : I d b
the permittivity tensor. Assuming for all of the field component@an_n_ oundary con ftions at magnetic walls need not .t.o N
explicitly enforced since they are natural boundary conditions

az-dependence of the foraxp(—jvz), withy = 3—ja as the ) ) . .
complex propagation constant and dividing the waveguide crcfp.g,r% E)TSn:Oirsmsl:)lﬁ/t:a(:jnv:?r? l?r:(eadf.u-lr;zt?oggil ger;efrz:leze'z\jlj AeTlgigvalue
section(? into a number of hybrid interpolation-type triangula arn

y P yP g artial differential equations (PDESs) toolbox, based on the im-

functions, we expand the electric field within each element as . ) . :
plicitly restarted Arnoldi method as implemented in ARPACK
= . . . 16]. (The most recent and efficient techniques for the solu-
B =Bz + Byy+ B2 'Eion] 01(‘ sparse eigenvalue problems are discgssed in [17], where
:(ﬁ:{U}T + 4 {V}T) -{E} exp(—jvz) URL's to available implementations are also presented.)
in 5 T i
FIVEANT - A} exp(=72) @ ll. REDUCED-ORDER MODEL
where{E,} and{E.} are, respectively, the transverse- and lon- The FEM formulation of the modal problem for waveguiding
gitudinal-variable vectors for each eleme{it/} and{V} are structures corresponds to the solution of the generalized eigen-
the basis functions’ vectors for the triangular curl-conformingalue problem (4). If one deals with a large-size problem and
element, and N} is the basis functions’ vector for the trian-is looking for the solution over a wide frequency band, then the
gular nodal element. analysis can become very time consuming. In order to speed up
Curl-conforming bases that ensure the continuity of tangecemputations, the AWE technique can be adopted. The matrices
tial-field components at element interfaces and eliminate spi-andM, eigenvalues. = 2, and eigenvector® are all func-
rious modes in finite-element formulations were first introducetibns of the wavenumbdr. Substituting their Taylor expansions
by Nedelec [9]. Recently, higher order interpolatory forms afroundk = kq into (4) and matching the coefficients of the
both curl- and divergence-conforming vector bases have bemnresponding powers ok (— kg), a recursive system of equa-
presented [10]. Curl-conforming bases complete to opdane tions to be solved for theth-order frequency derivatives (mo-
obtained by forming the product of the zeroth-order curl-coments{ A\ (kq), EP (ko) ¢_, is obtained [7]. Since all linear
forming bases with polynomial factors completertt order. systems have the same coefficient matrix, the computation of
We use multiplying polynomials of shifted interpolatory formthe eigenvector derivatives can be performed efficiently once a
It must be noticed that, since, x Et and V. E. should be factorization of this matrix is available. After the frequency mo-
complete to the same ordgrthe transverse vector componenients have been obtainedandE may be expressed over a fre-
of the electric fieldE, must be represented by curl-conformingjuency range around a specified expansion plgjntith their
functions of ordep and the longitudinal expansion functionsTaylor expansions. It is well known, however, that power series
have to be of ordep + 1 [11]. Higher order elements can cor-always have a finite radius of convergence in the presence of
rectly model the discontinuity of the normal field componentgoles. Padé approximations, instead, employ rational functions
at interfaces between different materials. The correct behaviorapproximate a function also beyond the convergence region
of the field component normal to the triangle edges cannot béits Taylor expansion. To obtain a wide-band response, several
described by zeroth-order bases because such functions doredticed-order models are usually combined together in a piece-
have interior degrees of freedom. For= 1, each triangular wise fashion to form a single reduced-order model across the
element contributes with only two interior degrees of freedorband of interest. Unfortunately, higher order moments are usu-
whereas the element has three edges pFer 2, there are six ally scarcely linearly independent so that their explicit use, as in
interior degrees of freedom per triangle and, hence, the norm&VE, can result in ill-conditioned numerical computations [1].
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In order to overcome the numerical instability due to the explidih order to extract more information from the solution in the

use of the frequency moments and to extract information froexpansion pointg;, the gth-order frequency derivatives of the

multiple points, we propose a novel approach. eigenvectorétE(q)(ki)}m may be computed up to the order
Let{E;(k)};;withj=1,....Mandi=1,...,PbeM For simplicity, we discuss the extension of the reduced-order

modal eigenvectors of (4) computedfatrequency points. The model for a single mode of the structure. The set of vectors

set of vectord £, (k;)}, ; define areduced-order subspatef {ED (ki) }i o define a reduced-order subspé&ef the original

the original Hilbert space Hilbert space

[1]

-

r
==/ spar{El(ki), . .,EM(ki)}. @) = spar{E(O)(ki), o 7E<D>(l@)}- (13)

i=1 =1

The basis vectors in (7) define a subspaceontainingE(k), Once again, the SVD yields an orthonormalized set of basis
but one has to decide how many of them are necessary. If fgpctions. As the order of the derivatives is increased, the nu-
few basis vectors are chosen, there is an unacceptable losB'gfical evaluation of the frequency moments becomes less ac-
accuracy in the representationsfk). If too many are selected, curate [19], but unlike the explicit moment-matching AWE pro-
one has a redundant description and some basis vectors mag@stire, the current approach provides a numerically stable re-
linearly dependent. In order to define an orthonormal basis ofduction model. In contrast with the subspace defined in (7), the
and its dimension, vectofg, (k;) }:; are arranged columnwise Vectors{ E‘? (k;) }; , are now not homogeneous and the selec-
in a matrix X of dimensionN x L [whereL = MP andN tion of the singular vectors cannot be based on the dynamics of
is the number of unknowns in (4)], which is subjected to thi&e corresponding singular values. In the following examples,

economy-size (thin) singular-value decomposition (SVD) [18]vhenever frequency derivatives have been computed, all the sin-
gular vectors have been retained in the reduced-order model.
X=T-5 R ®)
IV. RESULTS

whereT is anN x L matrix, .S is anL x L diagonal matrix with h . ¢ high q | dth
positive elements (singular value®)js anL x L unitary matrix, The convergence properties of higher order elements and the

andt stands for complex conjugate and transpose. The COMnﬂ&gurac%/ of thelrequc?dd—prdg model arg discussed tr|1roulgh a
of T" are the left singular vectors. The significance of the varioﬁfzels 0 e_xe;mp €s Including |sotrop(|jc anAI;emlsotropp, 0SSIess
singular vectors in the description of the modal fields is me&hd lossy inhomogeneous waveguides. All computations were

sured by the amplitude of the corresponding singular valué?rformed with MATLAB on a PC equipped with 1 GB of

Since those typically range over several orders of magnitud€, M.

not all of the singular vectors are needed for accuracy. MOrg- pielectric-Loaded Waveguide

over, by inspection of the dynamic range of the singular values, _ _ )

the accuracy level of the procedure can be controlled. A smallAS afirstnumerical example, we consider a rectangular wave-

dynamic range means that the corresponding singular vectB\%de ywth meta]hc walls Ioadeq with a d'lelectnc slab, as shov_vn

do not have sufficient span to adequately reprefi. in the inset of Fig. 1(a). Analytical solutions are kngwn for this
LetQ < L be the number of singular vectors assumed to (¥P€ of structure [20] and they can be used to investigate the con-

adequate to span the subspacdhese singular vectors defineVergence properties of_hlgher order elements. The relative error

a set of orthogonalized problem-matched basis functions of fecting the propagation constant of the fundameht, o

reduced-order subspace. The projection of the global matri¢B8de has been computed as a function of the number of un-
onto the subspace yields the reduced-order model knowns, for different orders of the interpolatory elements. As

expected, higher order bases achieve faster convergence rates
(j(_ ,72M) .E=0 (9) [see Fig. 1(b)]. However, it must be remarked that improved
convergence properties are obtained at the expense of producing
with less sparse system matrices. For this reason, elements of order
N t higher than three are rarely used in practice.
K =T, -K -Tq (10)  The proposed fast frequency-sweep technique has been ap-
R plied to the dominant mode of the waveguide. In order to in-
M=Tq-M-Tq (11) vestigate the numerical accuracy of this technique, the residual

whereT', consists of the firsg) columns of matrixt™. The new €rror is defined as

eigenvalue equation to be solved for each frequency value has K (k) - E(k) — \(E)M (k) - E(k)||

size@ x Q, whereQ may be much smaller thai. Notice that, &€= I E®R))| (14)
owing to (5) and (6), the system matrices in (9) can be assem- ) ) . .
bled directly in the reduced-order representation. Equationﬁﬁ‘ereE(k) andA(k) are the approximate eigenpairs obtained
can be inexpensively solved by a direct method and the appro%@M (9) and (12). In Fig. 2, we compare the error introduced

mate eigenvectors of (4) may be computed via the matrix—vectf two different reduced-order models. In the first model (solid
product line), the reduced representation has been obtained computing

R the solution atP = 4 frequency points. In the second model
E=Tq E. (12) (dashed line), the frequency derivatives of the solution have
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10° Fig.3. Normalized dispersion diagram for a box microstrip line on an isotropic
' ' T substrated,, = 8.875). The dimensions of the waveguide ate= 12.7 mm,
p=0 dy =1.27mm,d; = 11.43 mm,W = 1.27 mm, andt = 0.127 mm.

a has been divided into 62 triangles and basis elements of order
I e p = 2 have been employed.

B. Microstrip Line

Relative error
N
o

In the following example, we consider a shielded microstrip
transmission line on an isotropic lossless substrate, as sketched

107" in the inset of Fig. 3. The strip is assumed to be a perfect

conductor. The goal of this example is to demonstrate that the

1072 -2 — — s FEM-SVD technique is able to predict multimode characteris-
10 10 10 10 10

tics. Fig. 3 shows the propagation constants (normalized with
Number of unknowns ¥
) respect to the wavenumbé) of the first seven even modes
(®) of the structure versus frequency. The eigenvectors have been
Fig. 1. (a) Dispersion characteristics of the lowest five modes in thevaluated atP? = 8 frequency points, evenly spaced in the
dielectric-slab-loaded rectangular waveguide shown in the inset. (b) Relat'Bg . P
nd of interest from 10 to 25 GHz. The application of the

error affecting the propagation constant of the fundamedn$al,, mode (at - . .
the normalized frequendy,b = 3) for different orders § = 0,1,2) of the SVD decomposition yields 50 singular vectors. The range of

curl-conforming elements as a function of the number of unknowns. the Singu|ar values is approxima‘[e|y ten orders of magnitude,
which confirms that the frequency sampling rate is sufficient to
10° ' ' . represent the modal solutions of the guiding structure. In order
— FEM-SVD (P=4, D=0) to eliminate the redundancy from the basis functions set, the 23
100 | — - FEM-SVD (P=1, D=4) ] singular vectors corresponding to singular values five order of
magnitude below the dominant one have been neglected. As
5 it can be observed from Fig. 3, the selected problem-matched
510 basis functions alone are sufficient to reproduce the dispersion
2 . diagram of the structure with excellent accuracy (see [21,
g 10 Fig. 3] and [15, Fig. 3.8]). Even if the waveguide is lossless,
the propagation constants of the modes may be complex, as
10° discussed in [15]. The sixth and seventh modes degenerate into
two complex-conjugate modes and then split again into two
10'110_5 > 5 £ 3 35 ordinary modes. This phenomenon is correctly described by

I%(;b the reduced-order model, proving that the present method has

a broad range of applicability.

Fig.2. Relative error introduced by two different reduced-order models versus For a given accuracy, the equivalent dimensipof the sub-

frequency for the dominant made of the structure. space depends on the complexity of the spectral response over
the frequency range of interest. However, the number of ele-

been computed up to the ord&r = 4 at a single expansion ments in the computational domdihand their ordep does not

point kob = 2.5. In both cases, all the singular vectors havaffectQ.

been retained. The computation of the exact solution in 50 fre- )

quency points through the direct application of the FEM prdz- Coplanar Waveguide (CPW)

cedure takes 80 s, while reduced-order models lower the CPUn Fig. 4, we sketch the cross section of a symmetric CPW.

times to 12 and 6.4 s, respectively. The computational domadihis structure is a typical RF line for electrooptical (EO) mod-
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255 2 TABLE |
EW-FEM CONTRIBUTIONS TO THETOTAL CPU TiIME
s CM-FEM
25t --- HFSS-1 | e 115 ” Order p l CPU time, s
e HFSS-2 7
€ matrix 0 2.5
(]
:aq:, 245! % assembly 1 8
S process 2 40
A7 Lo, zeroth-order 0 1.6
PAL T e e 105 moments 1 i6
..... (each frequency) 2 87
2-350 5 10 15 20 higher-order 0 1
frequency, Ghz moments 1 11
Fig. 4. Microwave effective index...c and attenuatiorvyg (dB/cm) of a (each frequency) 2 !
symmetric CPW on an X-cut LiNbQsubstrate with a thin Si©buffer layer, SVvD 0 1
computed with FW-FEM (solid lines), CM-FEM (triangles), and HFSS (dashe
lines: 15000 tetrahedra; dotted lines: 50 000 tetrahedra). and 1 5
matrix products 2 14
ulators on LiNbQ substrates [22]. In such applications, syn. feduced-order sweep ||  any negligible
chronous coupling with the optical signal is usually achieve 0 254+1.6x20=345
by inserting a Iow—dlel.ectnc-c.onstant buffer Iaye.r underneat Total FEM 1 84 16 x 20 = 328
the electrodes and by increasing the electrode thickness. Mo 5 404 87 % 20 — 1780
over, the line-to-ground spacing must be kept small to maximi: —
the coupling between the microwave and optical fields. Due 1 0 25+ (16+1) x2+1=87
the small gap width, these lines exhibit high losses, whichcan  Total FEM-SVD 1 8+ (16+11) x2+5=67
minimized through electrode shape design. Owing to their cor 2 40+ (87 +71) x 2+ 14 = 370

plex cross section and their need for optimization, coplanar linc3
for EO modulators are typical candidates for analysis and design

with FEM-based EM computer-aided design (CAD) tools.  gled on a computer with 1 GB of RAM). The HESS propagation

Fig. 4 shows the computed propagation and attenuation c@@nstant is close to our FW-FEM results in both cases and the
stants of a symmetric CPW on an X-ddtpropagating LIND@  gifferences become negligible when the denser mesh is used.
substrate (the relative permittivities are 43 and 28 perpendigp, the other hand, HFSS underestimates losses with respect to
ular and parallel to the substrate surface, respectively) coategh-FEM and our FW-FEM and only a slight increase is seen
with a 1zm-thick SiG; buffer layer ¢ = 3.90). The gold jith the denser mesh. Since the same discrepancy can be ob-
(0 = 4.1 x 107 S/m) electrode thicknessis 20 um. The cen- served within vacuoCPWs (where numerical conformal map-
tral electrode width¥" is 10 um and the ground-plane g&p ping (CM) results are virtually exact), we deem that it may be
is 20 um. The loss tangents of the LiNBGubstrate and SIO  rejated to an insufficient refinement of the HFSS mesh close to
buffer layer aretané, = 0.004 andtané,, = 0.016, re- the metallic edges.
spectively [23]. The results of this approach are compared withtap|e | reports all the different contributions to the total CPU
version 7.0.11 of HFSS, a commercial three-dimensional (3-Bpne for the direct and reduced-order FEM, with the only excep-
FEM simulator; and with a numerical conformal mapping analtion of the mesh generation time, measured on a PC equipped
ysis coupled with quasi-TEM FEM (CM-FEM) [24], [25].  with an 800-MHz Intel Pentium Il processor. An overall com-

In contrast with pertubative methods based on the skin—effqgrison is also provided for a frequency sweep over 20 samples
approximation, the computational domain of FW-FEM includesn 5 20-GHz interva.
the electrodes, which are characterized by their complex dielecpye to their layered structure, CPWs cannot carry pure TEM
tric constants. Our FW-FEM computations have been carrigghdes. Therefore, the concept of characteristic impedance does
out on a coarse mesh with 984 triangles, taking advantager@ apply to CPWs in a rigorous sense. However, this quantity
the symmetry of the structure. Elements of order 2 have s very useful for design purposes. Among all the possible for-

been used, resulting in an eigenvalue problem with 14 130 Yfylations, we refer to the widely used power—current definition
knowns. The reduced-order model has been obtained compuiing
the frequency moments of the solution up to the otbes 4
at P = 2 expansion pointsf = 1 GHz, andf = 20 GHz. 7 2F (15)
The agreement between our FW-FEM and CM-FEM is excel- c |_r|2
lent over the entire frequency range. Two sets of HFSS resultg . . _

| hown. computed with 15000 and 50 000 tetrahe In our opinion, it would be L_mfa_lr to compare the timings of our reduced-
are also s ’ p dtmjer FW-FEM with HFSS, which is a 3-D simulator. As a matter of fact, the

respectively (the latter case is close to the limit that may be haamputation of a 20-point frequency sweep with HFSS required approximately
3 hwith the 15 000-tetrahedron grid and approximately one day with the 50 000-
IHFSS is a registered trademark of the Ansoft Corporation, Pittsburgh, PAetrahedron grid on the same computer used for FW-FEM simulations.
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60 range of the singular values is approximately six orders of mag-
---- FEM-SVD, Q=3 nitude [see Fig. 5(b)], which confirms that the frequency sam-
o5h T EEwsvD =t ] pling rate is sufficient to represent the solution. As can be ob-
50»‘\‘ ..... FEM T / served, five problem-matched basis functions are able to cap-
G \ / ture the EM field behavior of the structure with excellent accu-
N 45k ‘\\ ,/ | racy. This is possible, despite the fact that, owing to skin-effect
T e 7 losses, the internal field distribution in the conductors drasti-
a0l Rnniai ”";:f:."_‘s;;m"-:aw;:;, ............ )/’ ] cally changes within the selected frequency range. The depen-
g T dence of the subspagson the particular problem under consid-
35} T ol ] eration does not enable the definition of general criteria relating
(2 and the errof; however, as a rule-of-thumb, basis functions
30 - ) corresponding to singular values at least three orders of magni-
10 Frequ;r?cy chiz 10 tude below the dominant one can be safely neglected.
(@) V. CONCLUSION
0
10 A novel fast frequency-sweep technique has been described,
1ol . ] which enables to efficiently evaluate, through a vector FEM-
based approach, the propagation characteristics of inhomogeous
@ 102 o 1 anisotropic lossy quasi-TEM/non-TEM waveguides. Speed im-
% o provements of about one order of magnitude with respect to tra-
g 0% . 1 ditional approaches in the wide-band analysis of typical struc-
3 . tures have been demonstrated. Besides being computationally
& 107l ] efficient, the fast sweep technique is robust and allows a self-
° . consistent automatic monitoring of the accuracy. The examples
108l . discussed demonstrate the applicability of the proposed method
| to a variety of structures; in particular, for quasi-TEM lines, it
10° s . . . has been shown that the method also allows for the efficient
0 2 4 N 6 8 10 computation of the characteristic impedance.
(b)

Fig. 5. (a) Characteristic impedance.(2) of the CPW of Fig. 4 versus
frequency computed with the FEM at each frequency point and via the
reduced-order method with = 3,4,5 problem-matched basis functions.
(b) Normalized singular values for = 1, ..., 10.

whereP is the modal power and is the totalz-directed cur-

rent carried by the central electrod@.and/ are related to the [1]
eigenvectors of (9) by
1 ’y* ~ T ~ % ~ ok ~ T ~ % * [2]
_§—<E M, -E +E -M,, E) (16)
who
. [3]
I :nya(NT TQ,Z) B 17)
with [4]
N=>" / / {NYdzdy (18)
€ ¢ [5]

whereT’ . is the lower part ofl’g, relative to the longitudinal
variables,M,, and M,_ are the projections onto the subspace (6]
= of matricesM,; and M,., respectivelys is the electrode
conductivity, { N} is the scalar shape functions vector defined

in (2), and the summatiok’, extends over the elements on the [7]
central electrode.

Fig. 5(a) shows the real part of characteristic impedance eval-
uated using? problem-matched basis functions. The eigenvec- [8]
tors of (4) have been computed Bt = 10 frequency points
evenly spaced in the band of interest from 0.1 to 10 GHz. The
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